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The e!ect of dispersal and inbreeding on the evolution of seed dormancy to avoid sib
competition is theoretically investigated, using a model which assumes a plant population with
patchy spatial structure in a constant environment. Applying the inclusive "tness method, the
evolutionarily stable dormancy rates are analytically derived for three cases: (a) an asexual
haploid population, (b) a diploid-hermaphrodite population in which the dormancy rate is
controlled by seeds, and (c) a diploid-hermaphrodite population in which the dormancy rate is
controlled by mother plants. The evolutionarily stable dormancy rates decrease in the order of
case (c), case (a), and case (b). In all the cases, the evolutionarily stable dormancy rates increase
with decreasing the dispersal rate. Although inbreeding generally increases the evolutionarily
stable dormancy rates, inbreeding due to sel"ng reduces the rate exceptionally in case (c).
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1. Introduction

In plant populations with spatially restricted seed
dispersal, sibling seeds that are clustered near the
mother plant inevitably interact with each other
when germinating. If local resources such as light
or space are limited, competition for these re-
sources would occur between genetically related
individuals, resulting in a potential reduction in
the inclusive "tness of the plants (Cheplick, 1992,
1993). Under such an assumption, recent theoret-
ical models have demonstrated that seed dor-
mancy or delayed germination of a part of the
same generation can improve the inclusive "tness
of plants because it reduces the intensity of sib
competition by decreasing the number of sibling
seeds germinating simultaneously (Ellner, 1986;
Nilsson et al., 1994; Lundberg et al., 1996). Sur-
prisingly, any kind of environmental #uctuation
or to whom correspondence should be addressed.
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or variability is not necessary for the evolution of
dormancy, although seed dormancy can function
as a bet-hedging strategy in a variable envir-
onment (Cohen, 1966, 1967, 1968; Bulmer, 1984;
Ellner, 1985a, b; Brown & Venable, 1986;
Venable & Brown, 1988).

The dispersal rate of seeds strongly a!ects the
genetical relationship between competitors, and
as a result, the intensity of sib competition; there-
fore, it should be one of the most important
factors that determine the evolution of germina-
tion behaviour. However, the previous models
that explored the evolution of dormancy in con-
stant environments did not treat the dispersal
rate as an explicit parameter (Ellner, 1986;
Nilsson et al., 1994; Lundberg et al., 1996), and so
it is still not clear how the dispersal of seeds
a!ects the evolution of seed dormancy. Another
factor that has signi"cant in#uence on the inten-
sity of sib competition is the mating system. In
particular, inbreeding can strongly alter the
( 2000 Academic Press
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relatedness between relatives, and so di!erent
levels of inbreeding should result in di!erent opti-
mal germination strategies. However, the rela-
tionship between the mating system and the opti-
mal dormancy rate has never been theoretically
analysed. One would expect that restricted dis-
persal or inbreeding promotes the evolution of
dormancy to avoid sib competition, because it
increases relatedness between competitors. How-
ever, at the same time seeds germinating after
dormancy have to compete with o!spring of their
sibs, and this competition is also intensi"ed in
such a situation. The latter negative e!ect might
counteract with the former positive one, and we
cannot know intuitively which of these e!ects is
more important. Therefore, we need a theoretical
investigation to evaluate properly the e!ect of
dispersal and inbreeding on the evolution of
dormancy to avoid sib competition.

Our major purpose in this paper is to construct
a new model for the evolution of seed dormancy
in a constant environment and to investigate the
e!ect of dispersal and inbreeding on the evolu-
tion. The new model incorporates a patchy
spatial structure to treat the dispersal rate of
seeds as an explicit parameter. This is the most
remarkable di!erence of our model from the pre-
vious models, which assume implicit spatial
structures (Ellner, 1986; Nilsson et al., 1994; Lun-
dberg et al., 1996). Applying the inclusive "tness
method, we derive the evolutionarily stable (ES)
dormancy rates both for an asexual haploid
population and for a diploid-hermaphrodite
population. In a sexual population, unless it is
completely selfed, there exist parent}o!spring
con#icts: the optimal strategy for an individual
generally di!ers from that for its parent (Trivers,
1974; Motro, 1983; Ellner, 1986; Yamamura
& Higashi, 1992; Godfray, 1995). Therefore, the
ES dormancy rate should depend on whether the
germination behaviour of a seed is controlled by
the genotype of itself or its mother. Actually,
maternal tissues such as seed coat or pericarp can
inhibit the germination of the seed physically
and/or chemically (Murdoch & Ellis, 1992). We
derive the ES dormancy rates both for o!spring
and maternal control.

Another purpose of this paper is to show the
remarkable usefulness of the inclusive "tness
method "rst invented by Hamilton (1964) and
further developed by various authors. We apply
the method to analyse the model in the following.

2. The Model

Suppose that an asexual haploid population or
a diploid-hermaphrodite population is in an en-
vironment which consists of an in"nite number of
patches, each of them occupied by N adult plants
(see Fig. 1). In Appendix B, we summarize the
major notations used in this paper. In the case of
a sexual population, each adult sexually produces
a su$ciently large number k of seeds before it
dies. Proportions s, t, and u"1!s!t of each
adult's ovules are fertilized by the pollen of itself,
its patchmates (which exclude itself ), and random
individuals in the entire population, respectively.
In the case of an asexual population, mating does
not occur, and all seeds are produced asexually.
Then, a fraction d of the seeds is randomly disper-
sed to all patches in the population, while 1!d
remain on their native patch. We assume that
dispersal does not incur any costs for simplicity.
After the dispersal phase, each seed germinates
with probability 1!D and remains dormant in
the soil with probability D. A proportion a of
dormant seeds survives to germinate at the next
year germination season and 1!a die due to
predation or decay. We consider only annual
dormancy and do not assume any seed bank
which persists for more than one year. Each year
competition occurs between the seeds germinat-
ing on the same patch, and new N adults are
randomly selected out of them, and the cycle
begins again. This model is similar to the model
of dispersal behaviour developed by Hamilton
& May (1977), Comins et al. (1980), Motro
(1982a, b, 1983), Frank (1986a), Taylor (1988a),
and Gandon & Michalakis (1999), and to the
model of sex allocation given by Bulmer (1986),
Frank (1986b), and Taylor (1988b), although
these models did not consider any age structures
unlike the present model.

Consider the population just after dispersal
and before germination. Let us de"ne class-0
seeds as zero-year-old seeds, i.e. the newly pro-
duced seeds, and class-1 seeds as one-year-old
seeds, i.e. the seeds that were produced and did
not germinate in the previous year. Class-0 seeds
can a!ect the "tness or survival of both the



FIG. 1. The life cycle of a plant in the model.
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class-0 and class-1 neighbours in the same patch
by changing the probability of germinating in the
"rst year; thus, the class-0 seeds are actually
&&actors'', and the class-0 and class-1 seeds are
both &&recipients'' in terms of the kin-selection
theory.

Now, we derive the average increase in the
inclusive "tness of a mutant class-0 seed which
has a di!erentially increased probability D#d of
remaining dormant. Although it can be derived
in a purely mathematical way using the formula
of Taylor (1990) or Taylor & Frank (1996) that
gives the gene frequency change in a class-struc-
tured population (see also Frank, 1998), here we
follow intuitive derivation in order to demon-
strate its evolutionary meaning. In this case, the
inclusive "tness increment of a mutant is de"ned
as the sum of the "tness increment of all the
individuals a!ected by the mutant behaviour,
each of them weighted by the relatedness coe$c-
ient of that individual to the mutant (Hamilton,
1964). In our model, the "tness of a seed is
measured in terms of the probability of its suc-
cessful establishment. Such a probability of suc-
cess can be decomposed into two components,
that is, the probability that the seed does not
delay its germination and wins competition in the
"rst year (hereafter described as the &&"rst-year
"tness''), and the probability that it delays germi-
nation and wins competition in the second year
(described as the &&second-year "tness'').

Following Taylor (1988a), let p denote the
probability that a seedling survives competition
with its patchmates germinating simultaneously
and successfully grows to an adult. The mutant
seed has the "rst-year "tness of [1!(D#d)]p,
which is the germination probability in the "rst
year multiplied by the probability of surviving
sib competition; thus, the mutant that increases
the probability of remaining dormant by small
d loses its "rst-year "tness by dp because the
residents' "tness is (1!D)p. However, since
every year a constant number of adults success-
fully establish on each patch, the "tness dp lost by
the mutant will be gained by its patchmates ger-
minating in that year. So we "nd the inclusive
"tness increment of the mutant in the "rst year
to be !dp#dpR

0?0,1
, where R

0?0,1
is the re-

latedness of a seed chosen at random from the
seeds germinating in a patch to a random class-0
seed germinating in the same patch. The sub-
script of R represents that the actor is a class-0
seed and the recipient is a class-0 or class-1 seed.

The mutant seed remains dormant with prob-
ability D#d, survives to germinate the next year
with probability a, and wins sib competition with
probability p. Multiplying these three values, we
have the second-year "tness (D#d)ap of the
mutant seed. Thus, the mutant increases its sec-
ond-year "tness by dap, but it means that its
neighbours germinating in that year lose the "t-
ness by the same amount. So the inclusive "tness
increment of the mutant in the second year is
dap!dapR

1?0,1
, where R

1?0,1
is the relatedness

coe$cient of a seed chosen at random from the
seeds germinating in a patch to a random class-1
seed germinating in the same patch (note that in
the second year the mutant is of class 1). Sum-
ming up these components, we obtain the inclus-
ive "tness increment of the mutant seed:

D=if"dp(!1#a#R
0?0,1

!aR
1?0,1

). (1)
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Note that D=if given by eqn (1) actually repres-
ents the average or expected increase in the in-
clusive "tness of a mutant seed, not the inclusive
"tness increment of a mutant seed in a speci"c
situation.

Each of R
0?0,1

and R
1?0,1

in eqn (1) can be
further decomposed. Let k denote the ratio of
class-0 seeds to all the seeds that germinate each
year. From the de"nitions of R

0?0,1
, R

1?0,1
, and

k, it is obvious that

R
0?0,1

"kR
0?0

#(1!k)R
0?1

, (2a)

R
1?0,1

"kR
1?0

#(1!k)R
1?1

, (2b)

where R
i?j

denotes the relatedness of a random
class-j seed to a random class-i seed in the same
patch. Actually, k is a function of D and a. A resi-
dent seed germinates in the "rst year and the next
year with probability 1!D and Da, respectively,
and so at equilibrium, kN (1!D) class-0 and
kNDa class-1 seeds germinate each year in a
patch. Therefore, assuming that the selection is
weak, we have

k"
1!D

1!D#Da
. (3)

The mutant allele is selected for if D=if is
positive, and selected against if it is negative.
Therefore, in the population in an evolutionarily
stable state, D=if should be equal to zero. Let k*
denote the evolutionarily stable value of k; i.e.
k*"kD

D/D* , where D* denotes the evolutionarily
stable dormancy rate. Solving equation
D=if"0 with respect to k, we obtain k* as
a function of a and R

i?j
's:

k*"
1!a#aR

1?1
!R

0?1
R

0?0
#aR

1?1
!R

0?1
!aR

1?0

. (4)

We show in Appendix A that R
0?0

"R
1?1

and
R

0?1
"R

1?0
in any cases that we assume in this

paper. Therefore, eqn (4) reduces to

k*"
1!R

d
!a(1!R

s
)

(1#a)(R
s
!R

d
)

, (5)

where R
s
"R

0?0
"R

1?1
denotes the related-

ness between two seeds of the same class in the
same patch, and R
d
"R

0?1
"R

1?0
denotes that

between two seeds of di!erent classes in the same
patch. Di!erentiating k* with respect to R

s
or R

d
,

we have

Lk*
LR

s

"!

(1!a)(1!R
d
)

(1#a)(R
s
!R

d
)2
(0, (6a)

Lk*
LR

d

"

(1!a) (1!R
s
)

(1#a)(R
s
!R

d
)2
'0, (6b)

Noting that k is a decreasing function of D, we
have

LD*
LR

s

'0, (7a)

LD*
LR

d

(0. (7b)

Thus, D* increases as R
s

increases, whereas it
decreases R

d
increases. Since restricted dispersal

or inbreeding would increase both R
s

and R
d
,

eqns (7a) and (7b) theoretically represent that
it generates two opposite selection pressures as
suggested in the Introduction. First, dormancy
allows seeds to weaken competition among sibs
within the same class, where relatedness between
seeds of the same class is R

s
. Thus, as R

s
in-

creases, dormancy becomes more bene"cial, and
as a result D* increases. Second, seeds germinat-
ing after dormancy are forced to compete with
o!spring of their sibs. In this case, the relatedness
between the di!erent classes is R

d
; therefore, the

increase in R
d

reduces the net bene"t of dor-
mancy, and as a result D* decreases. In order to
know the net e!ect of restricted dispersal and
inbreeding on the evolution of dormancy, we
need a further detailed investigation. In eqn (4),
we derived k* as a function of a and R

i?j
's, but

R
i?j
's themselves depend on k. Therefore, to ob-

tain the explicit value of D*, we have to reveal the
relationship between R

i?j
's and k. In Appendix

A, we calculate the values of R
i?j
's as functions of

k, and derive the explicit value of D* for three
distinct cases: (a) an asexual haploid population,
(b) a diploid-hermaphrodite population in which
the germination of a seed is controlled by its
own genotype, (c) a diploid-hermaphrodite
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population in which the germination of a seed is
controlled by the genotype of its mother. The
solutions are so complicated that we graphically
explore the features of the solutions in the next
section, mainly investigating which of the posit-
ive and negative e!ects of restricted dispersal and
inbreeding dominates the other.

3. The Evolutionarily Stable Dormancy Rate

First of all, the ES dormancy rates are always
smaller than 0.5 (Figs 2}4). This implies that
dormancy of more than half of sibs is useless to
FIG. 2. The relationship between the ES dormancy rate D* a
(0.0, 0.0), (b) (0.45, 0.0), (c) (0.9, 0.0), (d) (0.0, 0.45), (e) (0.45, 0.45), a
of sel"ng and mating with patchmates, respectively. The numbe
a are 2 and 0.9, respectively. The thicker solid lines, the dotted li
for a sexual population under maternal control, that for an
o!spring control, respectively. In case (a), the ES dormancy ra
0 under the given values of N and a, so the line for that is no
avoid sib competition in our model of annual
dormancy. The ES dormancy rate for parent con-
trol in a sexual population is always the largest,
and that for o!spring control in a sexual popula-
tion is the smallest, and that for an asexual popu-
lation is between them, given the same parameter
values.

3.1. EFFECT OF THE DISPERSAL RATE

In all the cases, D* at "rst remains 0 as the
dispersal rate d decreases from 1, but it increases
with decreasing d when d is smaller than a speci"c
nd the dispersal rate d for di!erent mating systems: (s, t)"(a)
nd (f ) (0.0, 0.9), respectively, where s and t are the probabilities
r of adult per patch N and the survival rate of dormant seeds

nes, and the thinner solid lines represent the ES dormancy rate
asexual population, and that for a sexual population under
te for a sexual population under o!spring control is always
t displayed.



FIG. 3. The relationship between the ES dormancy rate
D* and the survival rate a. The types of lines used are the
same as in Fig. 2. N"1, d"0.1, s"0.2, and t"0.0.

FIG. 4. The relationship between the ES dormancy rate
D* and the number of adults per patch N. The thicker line
with "lled squares, the dotted line with empty circles, and
the thinner solid line with empty squares represent the
ES dormancy rate for a sexual population under maternal
control, that for an asexual population, and that for a
sexual population under o!spring control, respectively. The
squares and circles are marked on the points of the lines
where N is a natural number, a"0.9, d"0.1, s"0.2, and
t"0.0.
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value (Fig. 2). Thus, the model predicts that
restriction on seed dispersal will promote the
evolution of seed dormancy, but the dispersal
rate must be small to some extent for seed dor-
mancy to evolve actually in a constant environ-
ment. This result also indicates the positive e!ect
of restricted dispersal represented by eqn (7a)
dominates the negative one represented by
eqn (7b).

3.2. EFFECT OF THE MATING SYSTEM

O+spring Control

As shown in Appendix A, the ES dormancy
rate for the case of o!spring control in a sexual
population is the same as that for an asexual
population with 1!d replaced by (1!d)
(1!u/2), where u is the fraction of inter-patch
pollinations. If pollen dispersal does not incur
any costs, u is equal to the rate at which pollen
disperses outside the patch. This means that pol-
len dispersal has the same e!ect as that of seed
dispersal except that the latter is twice as large as
the former; that is, the ES dormancy rate mono-
tonically increases with decreasing u and be-
comes equivalent to the solution for an asexual
population when u"0. Since u"1!s!t, the
ES dormancy rate increases with increasing s or
t (see Fig. 2). Thus, in this case, the positive e!ect
(7a) of inbreeding on the dormancy rate domin-
ates the negative one (7b). From this result, we
predict that a high rate of dormancy will evolve
in a population which is highly inbred due to
restricted pollen dispersal if the germination of
a seed is controlled by its own genotype.

Maternal Control

In the case of maternal control, D* increases
with increasing t (Fig. 2), indicating that the
positive e!ect (7a) dominates the negative one
(7b) as in the case of o!spring control. However,
D* decreases with increasing s; i.e. in this case, the
negative e!ect (7b) dominates the positive one
(7a). Thus, D* decreases towards that for an
asexual population with decreasing t or increas-
ing s, so that they become equivalent when s"1
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and t"0. It is somewhat surprising that s and
t have opposite e!ects on D*, the reason for
which is considered in Discussion. From the re-
sult, we predict that highly selfed plants would
accompany high germination rates, whereas
highly inbred allogamous plants would accom-
pany high dormancy rates if the germination of
a seed is controlled by its mother.

3.3. EFFECT OF OTHER PARAMETERS

In all the cases, D* at "rst remains 0 as the
survival rate a increases from 0, but it begins to
increase when a becomes larger than a speci"c
value, and it "nally approaches 0.5 as a ap-
proaches unity (Fig. 3). This convergence of the
ES dormancy rates on 0.5 can be shown from eqn
(5). The expression on the r.h.s. of the equation
approaches 1

2
as a increases towards 1. On the

other hand, k* approaches 1!D* as a ap-
proaches 1 from eqn (3), so D* also approaches 1

2
with a increasing towards 1. This occurs prob-
ably because when there is no cost in dormancy,
sib-competition intensity due to density depen-
dent selection is minimized by dividing the sib
group equally into "rst- and second-year seeds.

D* is 0 when N is large, but it increases with
decreasing N when N is smaller than a speci"c
value (Fig. 4). Decreasing N increases both R

s
and R

d
, so that it has both the positive and

negative e!ects; however, the result shows that
the positive e!ect (7a) of decreasing N dominates
the negative one (7b). Of course, real populations
do not have strict patchy structure and so we
cannot measure the value of N itself actually;
however, N is considered to represent the spatial
size of a unit of competition among plants. There-
fore, we can predict from the result that a plant
population in which the unit of competition is
small in size is more likely to evolve dormancy.

4. Discussion

4.1. EFFECT OF DISPERSAL

In view of the evolution of dormancy due to
sib competition, previous workers suggested that
plants with well dispersed seeds would evolve to
germinate more quickly, because in such unvis-
cous populations competitors are less related,
and so the genetical bene"t of avoiding competi-
tion by delaying germination is small (Ellner,
1986; Cheplick, 1992; Nilsson et al., 1994;
Lundberg et al., 1996). However, as we already
revealed, restricted dispersal not only has the
positive e!ect on the evolution of dormancy but
also the negative one, and so we cannot know
intuitively whether it may favour dormancy or
not. In this paper, we have "rst investigated the
relationship between the optimal rate of seed
dormancy and the dispersal rate of seeds in a con-
stant environment, incorporating patchy or is-
land-like spatial structure into the model. The
result is that the optimal dormancy rate really
increases as the dispersal rate of seeds decreases;
i.e. the positive e!ect dominates the negative one,
so that restriction on seed dispersal promotes the
evolution of seed dormancy. In nature, there
exists the general trend that plants with well-
developed dispersal apparatuses are likely to ger-
minate more quickly than plants without any
such apparatuses, and this observation is consis-
tent with the prediction of the present model, if
seeds with well-developed dispersal apparatuses
are really well dispersed. Many of the "eld studies
about this topic were done using seed, fruit or
diaspore-heteromorphic plants (e.g. Flint &
Palmblad, 1978; McEvoy, 1984; Venable, 1985;
Tanowitz et al., 1987; Kigel, 1992), in which each
plant produces two or more morphologically dis-
tinct types of seeds, and the type which is more
dispersed often germinates more quickly than
that which is less dispersed (e.g. see Venable
& Levin, 1985; Rocha, 1996; Cheplick, 1996). Our
model does not include the di!erence in germina-
tion probability between dispersed and non-dis-
persed seeds, and incorporating it into the model
may produce interesting results, although we
leave the extension to future works.

It should be noted that we cannot alter the
dispersal rate without altering the mode nor the
amount of inbreeding in our model of a sexual
population; that is, as we increase the dispersal
rate with s, t, and u "xed, the absolute amount of
inbreeding also decreases due to the decrease in
within-patch relatedness. Thus, it is di$cult to
separate the net e!ect of local resource competi-
tion due to restricted dispersal from that of in-
breeding, although some previous models of sex-
ratio evolution successfully separated the e!ect of
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local mate competition from that of inbreeding
(Charlesworth & Charlesworth, 1981; Herre,
1985; Denver & Taylor, 1995).

A severe problem, which occurs when we try to
test the relationship between dispersal and germi-
nation predicted by the present model, is that
the theory of bet-hedging dormancy can give
the same prediction (Venable & Lawlor, 1980;
Bulmer, 1984; Klinkhamer et al., 1987; Venable
& Brown, 1988). Therefore, we should ask which
of the two factors, i.e. environmental #uctuation
and sib competition, is more important to the
evolution of seed dormancy. The model shows
that even at small N's, seed dormancy can hardly
evolve in a constant environment when the dis-
persal rate is not small (Fig. 2 shows the case of
N"2), whereas models of dormancy such as
a bet-hedging strategy show that non-zero rates
of dormancy are likely to evolve in patchy and
#uctuating environments even under large patch
sizes and relatively high dispersal rates (Venable
& Lawlor, 1980; Bulmer, 1984; Klinkhamer et al.,
1987; Venable & Brown, 1988). So one may con-
clude that seed dormancy is more likely to func-
tion as a bet-hedging strategy rather than as the
means to escape sib competition [but a study by
Zammit & Zedler (1990) would be a real example
of dormancy due to sib competition]; however,
the present model includes several unrealistic as-
sumptions (e.g. we did not assume dormancy
which persists for more than one year), and so
further investigations will be necessary to evalu-
ate the relative importance of sib competition.
In particular, we may need the model which
includes both environmental #uctuation and
resource competition among closely related
individuals.

4.2. EFFECT OF INBREEDING

The second factor that was shown to a!ect the
ES dormancy rate is the mating system. Inbreed-
ing increases the genetical relationship between
sibs competing for limited resources. From this
fact, one would expect that inbreeding always
promotes the evolution of dormancy to avoid sib
competition regardless of whether parents or o!-
spring control the germination behaviour of the
seeds, and whether &&inbreeding''means sel"ng or
not. However, as already stated, inbreeding not
only has the positive e!ect but also the negative
e!ect as well as restriction on dispersal. Actually,
in the case of maternal control, when the sel"ng
rate reduces from 1 with other parameters "xed,
the ES dormancy rate surprisingly increases,
leaving the ES dormancy rate for an asexual
population. Conversely, sel"ng reduces the
ES dormancy rate, whereas inbreeding among
patchmates increases the rate (Fig. 2); thus, self-
ing a!ects the evolution of dormancy more in the
negative direction than in the positive direction.
It is somewhat di$cult to intuitively understand
why we observe such a phenomenon. However,
the reason is probably as follows. As the sel"ng
rate becomes higher, the genetic relatedness be-
tween a mother and its grandchildren increases
more rapidly than that between the mother and
its o!spring. Therefore, from the viewpoint of the
mother, the genetical cost of competition be-
tween its o!spring and its grandchildren becomes
larger more rapidly than that of competition
among its o!spring. Thus, the negative e!ect be-
comes more important than the positive one, and
so the ES dormancy rate decreases. On the other
hand, inbreeding among patchmates would not
generate such an e!ect. We do not know whether
it can be observed in nature, but the result sug-
gests the signi"cance of distinguishing sel"ng
from the other types of inbreeding in modelling
plant populations. Except for the special case
mentioned above, inbreeding is expected to
favour delayed germination, according to the
model (Fig. 2). Especially in the case of o!spring
control, pollen dispersal essentially has the same
e!ect as that of seed dispersal. The pollen-disper-
sal rate determines the ES dormancy rate, and
the mode of inbreeding does not matter. Unfortu-
nately, we do not have any data that reveal the
relationship between the amount of inbreeding
and germination percentage. The prediction
can be tested if some appropriate studies are
conducted.

4.3. PARENT}OFFSPRING CONFLICT

In this paper, we have derived the ES dor-
mancy rates for the three distinct cases: (a) an
asexual haploid population, (b) a diploid-
hermaphrodite population in which the
dormancy of a seed is controlled by its own
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genotype, and (c) a diploid-hermaphrodite
population in which the dormancy of a seed is
controlled by the genotype of its mother. The
result is that the mother always favours a larger
dormancy rate than her o!spring do, and the
solution for an asexual population is intermedi-
ate. This can be interpreted as a parent}o!spring
con#ict over the germination rate, which was "rst
recognized by Ellner (1986). He concluded that
a seed coat or a thick pericarp is the evolutionary
consequence of parent}o!spring con#ict, that is,
it represents the manipulation by the mother of
the germination of her own seeds. While Ellner
(1986) only calculated the optimal germination
strategies for o!spring and for mothers separate-
ly, Lundberg et al. (1996) considered maternal
manipulation of germination and the tendency of
an embryo to germinate as two age-speci"c traits,
which coevolve to result in single actual germina-
tion rate, and theoretically analysed the coevolu-
tion. Although we do not treat the coevolution in
the present study, we do think that we can reveal
or profoundly understand the complex and inter-
esting features of kin selection by explicitly
considering the evolutionary con#ict between
interacting related individuals. For example, the-
oretical studies on the evolution of dispersal due
to sib competition revealed that there also exists
a similar con#ict over the dispersal rate between
a mother and its o!spring; i.e. mothers always
favour larger dispersal rates than their o!spring
(Motro, 1983; Frank, 1986a; Taylor, 1988a). It is
interesting to imagine that various types of dis-
persal apparatuses may be the expressions of the
parent}o!spring con#ict: mother plants may ma-
nipulate the dispersal of their seeds by attaching
dispersal apparatuses, which are maternal tissues
as well as seed coats, to the seeds. In the case of
dormancy, when the con#ict between the mother
and o!spring is large, we can expect that the seed
coat evolves to become thick, because the mother
must powerfully suppress the strong tendency of
her seeds to germinate. Thus, we have derived the
ES dormancy rates for the three cases separately
in this paper. However, the coevolution of the
maternal control of germination and the ger-
minability of seeds or the compromise of con#ict
is also an interesting problem (Yamamura &
Higashi, 1992), and so it should be further investi-
gated in future works.
In conclusion, our model leaves several unsol-
ved problems, but it gives some testable predic-
tions and helps to construct more realistic models
for appropriate experimental or "eld studies. In
addition, the model shows that the inclusive "t-
ness method is very useful to model the evolution
of life history traits especially in a population that
has spatial and/or age structures. The theory will
still greatly help us solve many problems which
appear in evolutionary ecology, social biology,
and behavioural science.
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APPENDIX A

The Derivation of the ES Dormancy Rates

Here, we investigate the relationship between
the relatedness coe$cients R

i?j
's and the ratio of

class-0 seeds k to derive the ES dormancy rate.
The relatedness coe$cient is generally de"ned
using the covariance between genotypic and
phenotypic values under non-additive gene e!ect
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(Orlove, 1978; Seger, 1981; Queller, 1985). In this
paper, for simplicity, we assume additive gene
e!ect. Suppose that X is an actor,> is a recipient,
and Z is an individual which controls the behav-
iour of X. Under additive gene e!ect, the related-
ness of > to X is given by the equation

R
X?Y

"

f
ZY
f
ZX

(A.1)

(Taylor, 1988a, 1989a), where f
IJ

is the coe.cient
of consanguinity between I and J, which is de"ned
as the probability that two genes, one of them
drawn at random from I and the other from J,
are identical by descent (Crow & Kimura, 1970).
Taylor (1988a) termed the relatedness given by
eqn (A.1) &&the relatedness of X to> from the view
point of Z'' to clarify who controls the behaviour
of the actor.

In the case of o!spring control, seeds control
their own behaviour. Therefore, from eqn (A.1),
we have

R
i?j

"

g
ij

g
i

, (A.2)

where g
ij

denotes the coe$cient of consanguinity
between a random class-i seed and a random
class-j seed in a single patch, and g

i
denotes the

coe$cient of consanguinity between a random
class-i seed and itself. In the same way, under
maternal control, we have

R
i?j

"

G
ij

G
i

, (A.3)

where G
ij

denotes the coe$cient of consanguinity
between a random class-j seed and the mother of
a random class-i seed in the same patch, and
G

i
denotes the coe$cient of consanguinity be-

tween a random class-i seed and its mother. At an
equilibrium state, g

1
and G

1
are equal to g

0
and

G
0
, respectively, because the genetical composi-

tion of class-0 seeds does not vary when they age;
i.e. g

1
(G

1
) in a year is equal to g

0
(G

0
) in the

previous year, and g
0

(G
0
) does not vary from

year to year at equilibrium. The coe$cient of
consanguinity between an adult plant and itself is
given by kg

0
#(1!k)g

1
because the adult was

a class-0 seed and a class-1 seed in the previous
year with probabilities k and 1!k, respectively.
Since g

0
"g

1
, it is also equal to g

0
at equilibrium.

Thus, we omit the subscripts of g
i
and G

i
after

this.
Especially in the case of an asexual haploid

population, there is only one gene on a locus, and
a seed and its mother always have identical genes;
therefore, G

ij
"g

ij
and g"G"1. Hence, eqns

(A.2) and (A.3) both reduce to:

R
i?j

"g
ij
. (A.4)

Thus, the ES dormancy rate does not depend on
whether the germination of a seed is controlled
by itself or by its mother. In the following, we
separately treat the cases of o!spring control and
maternal control.

OFFSPRING CONTROL

Here, we derive the ES dormancy rate for an
asexual population and that for a sexual popula-
tion under the assumption of o!spring control.
Let us de"ne x as the probability that a gene
drawn from a class-0 seed is the one inherited
from an adult inhabiting in the same patch, and
v as the coe$cient of consanguinity between two
di+erent adults inhabiting in a single patch.
g and g

ij
's satisfy the following equations at

equilibrium:

g
00

"x2 C
1
N

g#A1!
1
NB vD , (A.5a)

g
01
"xkg

00
#x (1!k)g

01
, (A.5b)

g
11

"g
00

, (A.5c)

v"k2g
00
#(1!k)2g

11
#2k (1!k)g

01
. (A.5d)

We derive the above eqns (A.5), being helped by
a diagram (Fig. A1). See "rst equation (A.5a).
Two genes drawn from two class-0 seeds both
came from adults inhabiting in the same patch
with probability x2. In this case, they came from
a single adult and from di!erent adults with
probabilities 1/N and 1!1/N, respectively. In
the former and latter cases, they are identical by
descent with probabilities g and v, respectively,



FIG. A1. The diagram for the calculation of the coe$-
cients of consanguinity. The number near each arrow de-
notes the probability that the gene drawn from an individual
of the group at the end of the arrow came from an individual
of the group at the beginning of the arrow.
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from the de"nitions of these coe$cients. Thus, we
obtain eqn (A.5a). Next, we derive eqn (A.5b).
From Fig. A1, two genes drawn from two seeds of
classes 0 and 1 both came from class-0 seeds in
the same patch in the previous year with prob-
ability xk, in which case they are identical by
descent with probability g

00
. They came from

two seeds of di!erent classes in the same patch in
the previous year with probability x (1!k), in
which case they are identical by descent with
probability g

01
. Thus, we have eqn (A.5b). From

Fig. A1, the coe$cient of consanguinity between
two class-1 seeds in a single patch is identical
with that between two class-0 seeds in a single
patch in the previous year. Thus, we have eqn
(A.5c). v can be also expressed using g

ij
's and k.

From Fig. A1, two genes drawn from two di!er-
ent adults in a single patch from two class-0 seeds
in the previous year with probability k2, in which
case they are identical by descent with probabil-
ity g

00
. They came from two class-1 seeds in the

previous year with probability (1!k)2, in which
case they are identical by descent with probabil-
ity g

11
. They also came from two seeds of di!er-

ent classes in the previous year with probability
2k(1!k), in which case the probability of being
identical by descent is g

01
. From the above, we

have eqn (A.5d). Since R
i?j

"g
ij
/g in the case of

o!spring control, dividing eqns (A.5) by g yields

R
0?0

"x2 C
1
N
#A1!

1
NB wD , (A.6a)
R
0?1

"R
1?0

"xkR
0?0

#x (1!k)R
0?1

, (A.6b)

R
1?1

"R
0?0

, (A.6c)

where

w"k2R
0?0

#(1!k)2R
1?1

#2k(1!k)R
0?1

. (A.6d)

From eqns (A.6), we obtain R
i?j
's. Substituting

R
i?j
's with k replaced by k* into eqn (4), and

solving the equation, we obtain two candidates of
k*. However, one can easily check by some stan-
dard calculations that only the larger one is
positive and is m-stable or convergently stable
(Eshel & Motro, 1981; Eshel, 1983; Taylor,
1989b; Christiansen, 1991); therefore, k* is actual-
ly the larger solution if it is smaller than 1, and
otherwise k* is 1. Finally, we obtain the ES dor-
mancy rate D* from eqn (3):

D*"
A!JP

(1!a)[A#4ax(N!1)!JP]
, (A.7a)

where

A"a(1#2x)!1

!(N!1)(1!a)(1!x), (A.7b)

P"[a(1#2x)!1]2#2(N!1)(1!a)

][5#3x!(5#5x#2x2)a]

#[(N!1)(1!a)(3#x)]2, (A.7c)

if the r.h.s. of eqn (A.7a) is positive, and otherwise
D*"0. Actually, in the special case of N"1,
only one candidate of k* is obtained, and it is
convergently stable. Then, D* is obtained in quite
the same way from eqn (3):

D*"
a[1#x#x2]![1#x]

[(1#x)a!1][1#x!(1!x)a]
(A.7d)



DORMANCY AND SIB COMPETITION 23
if the r.h.s. of eqn (A.7d) is positive, and otherwise
D*"0. Equation (A.7d) is also equal to the limit
of eqn (A.7a) as NP1.

Now, we consider the value of x. In the case
of an asexual population, a gene drawn from
a class-0 seed is the one inherited from an adult in
the same patch, if and only if the seed is native to
the patch, which occurs with probability 1!d.
Thus, we have

x"1!d. (A.8)

In the case of a sexual population, a class-0 seed
is native to the patch also with probability 1!d.
Suppose that a class-0 seed is native. Note that
a gene drawn from the seed can be one from an
adult outside the patch only if the gene is from
the father, because the mother of the seed is in
that patch. The gene is from the father with
probability 1

2
, and the father is outside the patch

with probability u, because a seed is produced
by inter-patch mating with that probability.
Thus, the probability with which the gene came
from an adult outside the patch is u/2. Therefore,
we have

x"(1!d ) A1!
u
2B . (A.9)

MATERNAL CONTROL

In an asexual population, the ES dormancy
rate for maternal control is the same as that for
o!spring control as mentioned before, and so
here we consider only the case of a sexual popula-
tion. In the case of a sexual population, G and
G

ij
's satisfy the equations below at equilibrium:

G
ij
"

2g
ij

2!u
, (A.10a)

G"1
2

g#1
2

(sg#tv), (A.10b)

where v is de"ned by eqn (A.5d). We construct
eqns (A.10) again being helped by Fig. A1. Let us
de"ne E

0j
as the coe$cient of consanguinity be-

tween a random class-j seed and a random adult
inhabiting the same patch. From Fig. A1, we "nd
that

g
0j
"xE

0j
. (A.11)
A class-0 seed is native to the patch with prob-
ability 1!d, in which case the mother of the seed
is in the same patch. Thus, 1!d times E

0j
gives

the probability G
0j

that two genes drawn from
the mother of a class-0 seed and a class-j seed
in the same patch where the class-0 seed is are
identical by descent;

G
0j
"(1!d )E

0j
. (A.12)

From eqns (A.11) and (A.12), we obtain the equa-
tion

G
0j
"

1!d
x

g
0j

. (A.13)

Let us de"ne E
1j

as the coe$cient of consanguin-
ity between a random class-j seed in the present
year and a random adult in the same patch in
the previous year. Considering in the same way
as above, we obtain the relationship between
G

1j
and g

1j
:

G
1j
"

1!d
x

g
1j

. (A.14)

Finally, from eqns (A.13) and (A.14), we have

G
ij
"

1!d
x

g
ij
. (A.15)

Substituting eqn (A.9) into eqn (A.15), we obtain
eqn (A.10a). Now, we derive eqn (A.10b). Envis-
age that we draw two genes from a seed and its
mother. The gene drawn from the seed is the one
inherited from the mother with probability 1

2
, in

which case the two genes are identical by descent
with probability g. The gene drawn from the seed
is the one inherited from the father also with
probability 1

2
. In this case, the father is identical

with the mother with probability s, in which case
the two genes are identical by descent with prob-
ability g. The father is not identical with the
mother but in the same patch where the mother is
with probability t, in which case the two genes are
identical by descent with probability v. Thus, we
obtain eqn (A.10b).

Substituting eqns (A.10) into eqn (A.3), we have

R
i?j

"

4g
ij

(2!u)(g#sg#tv)
. (A.16)
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Dividing both the numerator and the denomin-
ator of the fraction in the r.h.s. of eqn (A.16) by g,
we "nd that R

i?j
's can be obtained from g

ij
/g1s,

which are obtained from eqns (A.5). Then we
obtain the ES dormancy rate for maternal con-
trol in a sexual population in the same way as
that for o!spring control is obtained:

D*"
B!JQ

(1!a)[B#4axyz(1!x)(N!1)!JQ]
,

(A.17a)
where

B"a[x(1!2x)#y2]!(y2!x)

!(N!1)(1!a)yz(1!x)2, (A.17b)

Q"[ax(1!2x)#ay2!(y2!x)]2

#2(N!1)(1!a)yz(1!x)

][(5!x)(y2!ay2#ax2)

!x(1#3x) (1#a!ax)]

#[(N!1)(1!a)yz(1!x)(3#x)]2,

(A.17c)

x"(1!d ) A1!
u
2B, (A.17d)

y"1!
u
2
, (A.17e)

z"
1#s

2
!

t
2(N!1)

, (A.17f )

if the r.h.s. of eqn (A.17a) is positive, and other-
wise D*"0. In the special case of N"1,
if the r.h.s. of eqn (A.17g) is positive, and other-
wise D*"0. Equation (A.17g) is equal to the
limit of eqn (A.17a) as NP1. Note that t is
always 0 in the case of N"1, because an adult
plant has no patchmates other than itself in that
case.

APPENDIX B

Notation

N The number of adult plants in a patch.
k The number of seeds per adult plant.
d The dispersal probability of a newly pro-

duced seed.
D The probability that a class-0 seed re-

mains dormant.
a The survival probability of a dormant

seed.
k The ratio of class-0 seeds in the germinat-

ing seeds.
s The proportion of sel"ng.
t The probability that an ovule of an adult

plant is fertilized by its patchmates.
u The probability that an ovule of an adult

plant is fertilized by an adult outside the
patch.

R
i?j

The relatedness coe$cient of a random
class-j seed to a random class-i seed in the
same patch.

R
s

The relatedness coe$cient between two
seeds of the same class in a single patch.

R
d

The relatedness coe$cient between two
seeds of di!erent classes in a single patch.

g
ij

The coe$cient of consanguinity between
a random class-i seed and a random
class-j seed in the same patch.

g
i

The coe$cient of consanguinity between
a random class-i seed and itself.

G
ij

The coe$cient of consanguinity between
a random class-j seed and the mother of
a random class-i seed in the same patch.

G
i

The coe$cient of consanguinity between
a class-i seed and its mother.
D*"
a[y2!x3]#x2!y2

a2[(1!x)(x2!y2)]#a[2y2!xy2!x3]#x2!y2
, (A.17g)
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